An Enhanced Movie Recommender System Using
Hybrid Filtering Techniques

Ayush Linghwal*, Neeraj Negi**, Nikita Malik***

Abstract: In this research paper, a movie recommender system
using machine learning is designed and developed. To offer certain
tailored movie suggestions based on user choices and previous
interactions, the system uses content-based filtering, collaborative
filtering, and a hybrid approach. The Python solution uses Streamlit
for its web interface and includes libraries: Scikit-learn, Pandas,
and NumPy. According to experimental results, the hybrid model
improves user happiness and accuracy in suggestion, while
resolving typical issues of data sparsity with the cold-start problem.

Keywords: Streamlit, Machine Learning, Content-driven Filtering,
Collaborative Filtering, Movie Recommender System.

1. INTRODUCTION

Users find it challenging to choose films that suit their tastes as
the number of films available on digital platforms grows.
Dissatisfaction usually results from the absence of a specific
experience afforded via customary search mechanisms.
Through making film recommendations dependent upon
viewing history as well as user choices, a movie recommender
system eases content discovery. This study uses a machine
learning-based movie recommender system in order to increase
recommendation accuracy. It blends collaborative and content-
based filtering strategies.

Digital streaming services providing wide-ranging movie
collections intended for various audiences have thoroughly
changed the way people obtain entertainment. As the quantity
of easily accessible films continues to increase, users battle.
Often, they cannot select films that match their interests.

Recommender systems are used extensively by e-commerce,
online education, and digital media streaming. Advanced
algorithms get used by services, such as Netflix, Amazon
Prime, as well as Disney+ [4] for examination of user
behavior, plus make content recommendations depending on
previous exchanges. Besides helping users locate content,
these systems further engagement, retaining audiences plus
generating income for the platform.

To get around these restrictions, this study suggests a hybrid
movie recommender system of collaborative and also content-
based filtering strategies. The system serves for a larger
audience; it integrates the advantages of both approaches in
order to provide recommendations that are more varied with
better accuracy. The system's implementation involves
multiple data preprocessing steps, multiple feature extractions,

plus similarity calculations. Machine learning-based ranking
mechanisms are components of this implementation. The study
assesses the efficacy of the suggested system in terms of user
satisfaction as well as recall, accuracy, and also precision.

This paper's remaining sections are arranged as follows:
Existing recommendation methods and related work are
covered in Section 2. The methodology and system design are
described in Section 3. Implementation details are presented
in Section 4, and performance evaluation and results are
presented in Section 5. Section 6 concludes by outlining
conclusions and potential avenues for system improvement.

2. LITERATURE REVIEW

The development of movie recommender systems has
benefited from several studies:

item-based
improves

e Sarwar et al. (2001) [1] developed
collaborative filtering, a technique that
scalability over user-based approaches.

e He et al. (2017) investigated neural collaborative filtering
using deep learning models to increase recommendation
accuracy in recommender systems.

e Schafer et al. (2007) highlighted the benefits of integrating
various filtering methods to improve accuracy and
diversity in hybrid recommender models.

The existing literature demonstrates that hybrid recommender
systems [3] outperform traditional standalone models in terms
of accuracy and adaptability.

3. BACKGROUND STUDY

3.1 Movie Recommendation Systems

By making of personalized film recommendations, movie
recommendation systems improve with it the user experience.
Based on previous interactions, metadata, as well as behavioral
patterns, they broadly forecast user interests via data analytics
plus machine learning.

3.2 Content-Based Filtering

Content-based filtering [2] recommends movies through an
analysis of their attributes, such as with genres, actors,
directors, and also descriptions. This technique uses text-

*Student, Dept. of Computer Applications, Maharaja Surajmal Institute, GGSIP University, New Delhi-58, India
**Assistant Professor, Dept. of Computer Applications, Maharaja Surajmal Institute, GGSIP University, New Delhi-58, India

*#*Corresponding author: "nikitamalik@msijanakpuri.com

Vol. 8 Issue 1 January-June 2025

44

An Enhanced Movie Recommender System Using Hybrid Filtering Techniques

processing methods. Such methods, like TF-IDF (Term
Frequency-Inverse Document Frequency) [5] and cosine
similarity, compute the relevance of a movie to a user’s past
preferences.

Collaborative filtering, unlike content-based methods, makes
suggestions from similar users' preferences. There are basically
two kinds:

1. User-based collaborative filtering: Identifies users that
share similar viewing preferences as well as suggests films
that they certainly enjoyed.

2. Item-based collaborative filtering: Finds films comparable
with ones a user saw and gave high ratings to.

3.3 Hybrid Approach

Hybrid models combine content-based and collaborative
filtering methods to improve recommendation accuracy. This
approach mitigates the cold-start problem by leveraging both
movie metadata and user interactions.

3.4 Libraries and Technologies Used

1. Pandas and NumPy: These libraries are important for
purposes that handle movie datasets. They perform
numerical computations, and structure data efficiently.

2. Scikit-learn [7]: machine learning algorithms, like
similarity measures and matrix factorization techniques
for collaborative filtering.

3. Streamlit [8]: It's a Python web framework that's used in
the development of a wuser interface for some
recommendation system.

4. SQLite [9]: A lightweight database for storing user
ratings, movie details, and recommendation logs.

Cosine Similarity & Matrix Factorization: Applied in both
content-based and collaborative filtering models to compute
relationships between movies and users.

3.5CSV

A popular file format for storing and for sharing of structured
data is Comma-Separated Values (CSV). In this movie
recommender system, CSV files store user ratings and
interaction data. Movie details are also stored. To better ease
data management and also enable recommendation retrieval,
the system analyzes certain CSV files for extraction of
information. For preprocessing, also training, and further
testing, the use of CSV guarantees that such datasets remain
small and accessible.

Python's wide-ranging libraries are used in the construction of
the movie recommender system. These are for web
development, machine learning, as well as data processing.

The system's frontend is developed using Streamlit [8], a web
framework based in Python, which allows creation of friendly,
interactive interfaces. Many users of Streamlit [8] can readily
interact with the system, enter preferred movies, and receive
recommendations in real-time.

The backend is developed via Python, incorporating scikit-
learn [7] for implementing a number of machine learning
algorithms like collaborative filtering, content-based filtering,
and hybrid models. The system uses pandas and NumPy also
in data preprocessing for handling large movie datasets.

The system's data, including user ratings as well as movie
details, are stored and thoroughly managed using SQLite [9], a
lightweight relational database. Additionally, CSV files can be
used in the handling of structured datasets, to allow for easy
data retrieval and manipulation.

4. RELATED WORK

Several techniques have been employed in recommender
systems, including:

1. Content-Based Filtering: Utilizes movie metadata
(genre, actors, directors) to suggest similar movies.

2. Collaborative Filtering: Recommends movies based on
user behavior and preferences.

3. Hybrid Approach: Combines both methods to mitigate
limitations such as cold-start problems and sparsity.

Prior studies indicate that hybrid models yield better accuracy
compared to standalone techniques.

5. SYSTEM DESIGN AND METHODOLOGY
5.1 Data Gathering and Preparation

The dataset, which includes movie details like titles, genres,
descriptions, and user ratings, is used to train and test the
system. In data preprocessing, missing values are handled and
ratings are normalized.

Using methods like TF-IDF vectorization recommendation
techniques, text data can be transformed into numerical
representations.

Cosine similarity [6] is used in content-based filtering to
compare movie descriptions and recommend related content.

Collaborative filtering uses similarity metrics like Pearson
correlation to apply both item-based and user-based filtering.

To improve recommendation accuracy and get around
individual constraints, the hybrid model combines the two
methods.

5.2 System Architecture

The system comprises three main components:

Vol. 8 Issue 1 January-June 2025

45

Mr. Amit Yadav

1. Data Processing Module: Cleans and structures the
dataset.

2. Recommendation Engine: Implements content-based,
collaborative, and hybrid filtering models.

3. User Interface: Built with Streamlit [8] to provide real-
time recommendations and user interaction.

6. IMPLEMENTATION
6.1 Data Collection

1. Collecting movie datasets containing movie details, user
ratings, and genres.

2. Storing structured data in CSV format for easy retrieval
and processing.

6.2 Data Pre-processing

1. Handling missing values by filling in or removing
incomplete data.

2. Normalizing numerical features like ratings to improve
model performance.

3. Transforming text data using TF-IDF vectorization to
analyze movie descriptions.

6.3 Training the Recommendation Models

1. Content-Based Filtering: Calculating cosine similarity
between movie features to generate recommendations.

2. Collaborative Filtering: Using user-based and item-based
similarity matrices to suggest movies.

3. Hybrid Approach: Combining content-based and
collaborative filtering for improved accuracy.

6.4 Model Deployment

1. Implementing a Streamlit [8]-based user interface for
interactive recommendations.

2. Connecting the system to a SQLite [9] database for
managing user interactions and ratings.

3. Providing real-time recommendations based on user input
and feedback.

6.5 Performance Evaluation

1. Evaluating system accuracy using precision, recall, and
F1-score.

2. Analyzing computational efficiency and response time for
real-time recommendations.

By following these steps, the system ensures scalability,
efficiency, and accurate recommendations for users.

6.6 Experimental Setup

To assess the system's performance under various
circumstances, it is tested in a variety of settings. Figure 1
shows the user interface of the developed movie recommender
system. Several user scenarios are included in the test setup to
evaluate efficiency, accuracy, and robustness. The assessment
takes into account a number of factors, including:

e User interaction: evaluating suggestions made by different
user profiles with varying tastes in films.

e Data Size Variation: To assess the system's scalability, run
it on datasets of different sizes.

e Algorithm Comparison: Examining the wvariations in
accuracy among collaborative, content-based, and hybrid
filtering models.

e Real-Time Performance: Assessing how quickly the
system responds when making dynamic movie
recommendations. Evaluating the system's performance
for new users with no past interaction history is known as
the "cold-start problem."

e Diversity and Novelty Testing: Verifying that the system
offers unique and diverse suggestions as opposed to
reiterating preexisting ones.

Movie Recommender System

Select a movie:

Pirates of the Caribbean: At World's End v

‘ Recommend

The Train

Gladiator KungFuPanda2 Avengers: Age of Men of War

Ultron

Figurel: Movie Recommender System user interface
6.7 Testing Scenarios

e Baseline Testing: Running the recommender system with
a small dataset to ensure core functionality and
correctness.

e Large-Scale Testing: Using a dataset with thousands of
movies and user ratings to evaluate performance under
real-world conditions.

e Cold-Start User Simulation: Creating new user profiles
and analyzing the system’s ability to generate meaningful

Vol. 8 Issue 1 January-June 2025

46

An Enhanced Movie Recommender System Using Hybrid Filtering Techniques

recommendations.

e User Feedback Integration: Collecting user responses to
assess satisfaction with the recommendations and make
necessary adjustments.

e Latency Measurement: Recording the time taken to
generate recommendations under different loads to ensure
a responsive system.

7. RESULTS AND DISCUSSION

The system’s performance is evaluated based on standard
recommendation system metrics, including precision, recall,
F1-score, and mean absolute error (MAE).

From the results, the hybrid model outperforms both individual
models, providing more accurate and diverse
recommendations. The content-based model struggles with
new users due to a lack of prior data, while collaborative
filtering performs well when sufficient user interactions are
available. The hybrid approach mitigates both these issues,
making it the most effective model for real-world deployment.

8. CONCLUSION

This paper presents a machine learning-based Movie
Recommender System that integrates content-based and
collaborative filtering approaches to enhance recommendation
accuracy. The experimental results demonstrate that the hybrid
model provides Dbetter precision, recall, and overall
performance [10] compared to standalone models.

9. FUTURE SCOPE

Future enhancements to the system could include:

1. Deep Learning Integration: Using neural networks
(autoencoders, for example) to increase the accuracy of
recommendations.

2. Real-Time User Feedback: Using dynamic feedback
systems to continuously improve suggestions.

3. Scalability Improvements: Making the system more
user-friendly for massive datasets.

4. Cross-Platform Recommendations: extending the model
to suggest content from various categories, including
music, TV series, and books.

By implementing these improvements, the recommender
system can become more robust, scalable, and user-friendly,
further enhancing personalized content discovery in digital
platforms.

REFERENCES

[1] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, May). ltem-based
collaborative filtering recommendation algorithms. In Proceedings of the
10th International Conference on World Wide Web (pp. 285-295).

[2] Pazzani, M., & Billsus, D. (2007). Content-based recommendation
systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The Adaptive
Web (pp. 325-341). Springer, Berlin, Heidelberg.

[3] Burke, R. (2002). Hybrid recommender systems: Survey and
experiments. User Modeling and User-Adapted Interaction, 12(4), 331—
370.

[4] Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix recommender
system: Algorithms, business value, and innovation. ACM Transactions
on Management Information Systems, 6(4), Article 13.

[5] Salton, G., & Buckley, C. (1988). Term-weighting approaches in
automatic text retrieval. Information Processing & Management, 24(5),
513-523.

[6] Manning, C. D., Raghavan, P., & Schiitze, H. (2008). Introduction to
Information Retrieval. Cambridge University Press.

[7] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2825-2830.

[8] Streamlit Inc. (2024). Streamlit Documentation. Available online:
https://docs.streamlit.io

[91 Hipp, D. R. (2024). SQLite Documentation.
https://sqlite.org

[10] Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007).
Collaborative filtering recommender systems. In P. Brusilovsky, A.
Kobsa, & W. Nejdl (Eds.), The Adaptive Web (pp. 291-324). Springer,
Berlin, Heidelberg.

Available online:

Vol. 8 Issue 1 January-June 2025

47

	An Enhanced Movie Recommender System Using Hybrid Filtering Techniques
	Ayush Linghwal*, Neeraj Negi**, Nikita Malik***
	1. Introduction
	2. Literature Review
	3. Background Study
	4. Related Work
	5. System Design and Methodology
	6. Implementation
	7. Results and Discussion
	8. Conclusion
	9. Future Scope
	References

